Partial Differential Equations: Midterm Exam

Aletta Jacobshal 01, Tuesday 7 March 2017, 14:00-16:00
Exam duration: 2 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- 10 points are "free". There are 4 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (20 points)

Consider the eigenvalue problem

$$
\begin{equation*}
-X^{\prime \prime}(x)=\lambda X(x) \tag{1}
\end{equation*}
$$

with $0 \leq x \leq 1$, where $X(x)$ satisfies the boundary conditions

$$
X^{\prime}(0)+X(0)=X^{\prime}(1)-X(1)=0
$$

We consider only the case of negative eigenvalues, $\lambda=-\gamma^{2}$, with $\gamma>0$. Prove that γ must satisfy the equation

$$
\begin{equation*}
\tanh \gamma=\frac{2 \gamma}{\gamma^{2}+1} \tag{2}
\end{equation*}
$$

Using the graphical method, show that there is exactly one negative eigenvalue.
NB: In this question you may NOT consider as known either one of the formulas for negative or positive eigenvalues from the corresponding theory; you are being asked to prove Eq. (2) "from scratch", starting with the general solution of the ODE in Eq. (1).

Solution

We start by considering the general solution of $X^{\prime \prime}=\gamma^{2} X$, given by

$$
X=C \cosh \gamma x+D \sinh \gamma x
$$

The derivative is

$$
X^{\prime}=\gamma C \sinh \gamma x+\gamma D \cosh \gamma x
$$

Then the boundary conditions become

$$
X^{\prime}(0)+X(0)=C+\gamma D=0 \Rightarrow C=-\gamma D
$$

and

$$
X^{\prime}(1)-X(1)=\gamma C \sinh \gamma+\gamma D \cosh \gamma-C \cosh \gamma-D \sinh \gamma=0
$$

giving

$$
D\left(-\gamma^{2} \sinh \gamma+2 \gamma \cosh \gamma-\sinh \gamma\right)=0
$$

We exclude the case $D=0$ because then also $C=0$. Then we get

$$
\left(\gamma^{2}+1\right) \sinh \gamma=2 \gamma \cosh \gamma,
$$

and, finally,

$$
\tanh \gamma=\frac{2 \gamma}{\gamma^{2}+1}=: g(\gamma)
$$

We plot the graphs of the two functions, $\tanh \gamma$ and $g(\gamma)$.
We have

$$
g^{\prime}(\gamma)=\frac{2\left(1-\gamma^{2}\right)}{\left(\gamma^{2}+1\right)^{2}}
$$

From here we find that $g(\gamma)$ attains the maximum value $g(1)=1$ at $\gamma=1$ and that at $\gamma=0$ we have $g^{\prime}(0)=2$. Moreover, $\lim _{\gamma \rightarrow \infty} g(\gamma)=0$.
The function $\tanh \gamma$ is increasing with $\tanh \gamma<1$ and $\lim _{\gamma \rightarrow \infty} \tanh \gamma=1$. Moreover, at $\gamma=0$ we have $\tanh ^{\prime}(0)=1<g^{\prime}(0)$.
Therefore, we have the situation shown in the graph below, implying that there is exactly one intersection between the two graphs.

Question 2 (30 points)

(a) (15 points) Consider the non-homogeneous wave equation

$$
u_{t t}=c^{2} u_{x x}+f(x, t), \quad-\infty<x<\infty, t>0
$$

satisfying the homogeneous initial conditions $u(x, 0)=0$ and $u_{t}(x, 0)=0$. Show that the function

$$
u(x, t)=\frac{1}{2 c} \int_{0}^{t}\left(\int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y\right) d s,
$$

is a solution to the given problem.
Hint: Computations become easier by introducing a function $F(x, t)$ such that $F_{x}(x, t)=$ $f(x, t)$.

Solution

We first note that the given function satisfies

$$
u(x, 0)=\frac{1}{2 c} \int_{0}^{0}\left(\int_{x+c s}^{x-c s} f(y, s) d y\right) d s=0 .
$$

Then we compute u_{t}. This becomes easier if we write $F(x, t)$ for the x-antiderivative of $f(x, t)$, that is, $F_{x}=f$. Then

$$
u(x, t)=\frac{1}{2 c} \int_{0}^{t}(F(x+c(t-s), s)-F(x-c(t-s), s)) d s .
$$

We have

$$
\begin{aligned}
u_{t}(x, t)= & \frac{1}{2 c}(F(x+c(t-t), t)-F(x-c(t-t), t)) \\
& +\frac{1}{2 c} \int_{0}^{t}\left(c F_{x}(x+c(t-s), s)+c F_{x}(x-c(t-s), s)\right) d s \\
= & \frac{1}{2 c} \int_{0}^{t}(c f(x+c(t-s), s)+c f(x-c(t-s), s)) d s .
\end{aligned}
$$

Therefore, for $t=0$ we find that

$$
\left.u_{t}(x, 0)=\frac{1}{2 c} \int_{0}^{0}(c f(x-c s), s)+c f(x+c s, s)\right) d s=0 .
$$

Then we compute

$$
\begin{aligned}
u_{t t}(x, t)= & \frac{1}{2 c}(c f(x+c(t-t), t)+c f(x-c(t-t), t)) \\
& +\frac{1}{2 c} \int_{0}^{t}\left(c^{2} f_{x}(x+c(t-s), s)-c^{2} f_{x}(x-c(t-s), s)\right) d s \\
= & f(x, t)+\frac{c}{2} \int_{0}^{t}\left(f_{x}(x+c(t-s), s)-f_{x}(x-c(t-s), s)\right) d s
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
u_{x}(x, t) & =\frac{1}{2 c} \int_{0}^{t}\left(F_{x}(x+c(t-s), s)-F_{x}(x-c(t-s), s)\right) d s \\
& =\frac{1}{2 c} \int_{0}^{t}(f(x+c(t-s), s)-f(x-c(t-s), s)) d s,
\end{aligned}
$$

and

$$
u_{x x}(x, t)=\frac{1}{2 c} \int_{0}^{t}\left(f_{x}(x+c(t-s), s)-f_{x}(x-c(t-s), s)\right) d s .
$$

This shows that

$$
u_{t t}=f(x, t)+c^{2} u_{x x} .
$$

(b) (15 points) Solve the non-homogeneous wave equation

$$
u_{t t}=c^{2} u_{x x}+f(x, t), \quad-\infty<x<\infty, t>0,
$$

satisfying now the non-homogeneous initial conditions $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=0$.

Hint: The equation (including the boundary conditions) is linear.

Solution

The solution to the homogeneous equation

$$
u_{t t}=c^{2} u_{x x}
$$

with $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=0$ is given by

$$
u_{1}(x, t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)] .
$$

The solution to the non-homogeneous equation

$$
u_{t t}=c^{2} u_{x x}+f(x, t)
$$

with $u(x, 0)=0$ and $u_{t}(x, 0)=0$ is given by

$$
u_{2}(x, t)=\frac{1}{2 c} \int_{0}^{t}\left(\int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y\right) d s
$$

as it was shown in the previous subquestion.
Then we define $u=u_{1}+u_{2}$ and we have the following. First,

$$
u_{t t}=\left(u_{1}\right)_{t t}+\left(u_{2}\right)_{t t}=c^{2}\left(u_{1}\right)_{x x}+c^{2}\left(u_{2}\right)_{x x}+f=c^{2} u_{x x}+f
$$

Then

$$
u(x, 0)=u_{1}(x, 0)+u_{2}(x, 0)=\phi(x)+0=\phi(x)
$$

and

$$
u_{t}(x, 0)=\left(u_{1}\right)_{t}(x, 0)+\left(u_{2}\right)_{t}(x, 0)=0+0=0
$$

Therefore, the function

$$
u(x, t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)]+\frac{1}{2 c} \int_{0}^{t}\left(\int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y\right) d s
$$

solves the given problem.

Question 3 (20 points)

Solve the equation $u_{x}+u_{y}=u$ where the solution satisfies $u(x, 0)=x^{2}$.

Solution

The coordinate method from the book gives

$$
s=x+y, \quad t=x-y
$$

We then have

$$
u_{x}+u_{y}=\left(u_{s} \frac{\partial s}{\partial x}+u_{t} \frac{\partial t}{\partial x}\right)+\left(u_{s} \frac{\partial s}{\partial y}+u_{t} \frac{\partial t}{\partial y}\right)=2 u_{s}
$$

Therefore, the equation becomes

$$
u_{s}=\frac{u}{2}
$$

which has solution

$$
u=g(t) e^{\frac{1}{2} s} .
$$

Therefore, the solution in terms of the original coordinates is

$$
u=g(x-y) e^{\frac{1}{2}(x+y)}
$$

Then for $y=0$ we have

$$
g(x) e^{x / 2}=x^{2}
$$

implying

$$
g(x)=x^{2} e^{-x / 2}
$$

Finally,

$$
u=(x-y)^{2} e^{-\frac{1}{2}(x-y)} e^{\frac{1}{2}(x+y)}=(x-y)^{2} e^{y} .
$$

Question 4 (20 points)

Use the method of separation of variables to solve the equation

$$
u_{t}=k u_{x x}-u
$$

where $k>0,0 \leq x \leq \ell, t \geq 0$, and the solution satisfies the boundary conditions $u(0, t)=$ $u(\ell, t)=0$ and the initial condition

$$
u(x, 0)=2 \sin \left(\frac{\pi x}{\ell}\right)+\frac{1}{5} \sin \left(\frac{3 \pi x}{\ell}\right)
$$

NB: In this question you can use without proof the formulas for the eigenvalues and eigenfunctions of any eigenvalue problem discussed in the lectures.

Solution

We take the separated solution

$$
u(x, t)=X(x) T(t)
$$

Then we have

$$
X T^{\prime}=k X^{\prime \prime} T-X T
$$

and

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}-\frac{1}{k}
$$

To be able to easily use the known results we rewrite

$$
\frac{T^{\prime}}{k T}+\frac{1}{k}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

From the x-part we get the eigenvalue problem

$$
-X^{\prime \prime}=\lambda X, \quad X(0)=X(\ell)=0
$$

The eigenvalues are

$$
\lambda_{n}=\left(\frac{n \pi}{\ell}\right)^{2}, \quad n=1,2,3, \ldots
$$

while the eigenfunctions are

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{\ell}\right), \quad n=1,2,3, \ldots .
$$

The t-part gives the ODE

$$
\frac{T^{\prime}}{T}=-k \lambda-1
$$

with solution

$$
T=A e^{-(k \lambda+1) t} .
$$

Therefore, the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(k \lambda_{n}+1\right) t} \sin \left(\frac{n \pi x}{\ell}\right) .
$$

For $t=0$ we get

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{\ell}\right),
$$

which implies $A_{1}=2, A_{3}=1 / 5$, and all other A_{n} are zero. Therefore,

$$
u(x, t)=2 e^{-\left(k \lambda_{1}+1\right) t} \sin \frac{\pi x}{\ell}+\frac{1}{5} e^{-\left(k \lambda_{3}+1\right) t} \sin \frac{3 \pi x}{\ell},
$$

or

$$
u(x, t)=2 e^{-\left(k(\pi / \ell)^{2}+1\right) t} \sin \frac{\pi x}{\ell}+\frac{1}{5} e^{-\left(9 k(\pi / \ell)^{2}+1\right) t} \sin \frac{3 \pi x}{\ell} .
$$

