
Partial Differential Equations: Midterm Exam

Aletta Jacobshal 01, Tuesday 7 March 2017, 14:00–16:00
Exam duration: 2 hours

Instructions — read carefully before starting
- Write very clearly your full name and student number at the top of the first page of your exam sheet

and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,

theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- 10 points are “free”. There are 4 questions and the maximum number of points is 100. The exam grade is

the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (20 points)

Consider the eigenvalue problem

−X ′′(x) = λX(x), (1)

with 0 ≤ x ≤ 1, where X(x) satisfies the boundary conditions

X ′(0) +X(0) = X ′(1)−X(1) = 0.

We consider only the case of negative eigenvalues, λ = −γ2, with γ > 0. Prove that γ must
satisfy the equation

tanh γ = 2γ
γ2 + 1 . (2)

Using the graphical method, show that there is exactly one negative eigenvalue.
NB: In this question you may NOT consider as known either one of the formulas for negative
or positive eigenvalues from the corresponding theory; you are being asked to prove Eq. (2)
“from scratch”, starting with the general solution of the ODE in Eq. (1).

Solution

We start by considering the general solution of X ′′ = γ2X, given by

X = C cosh γx+D sinh γx.

The derivative is

X ′ = γC sinh γx+ γD cosh γx.

Then the boundary conditions become

X ′(0) +X(0) = C + γD = 0⇒ C = −γD,

and

X ′(1)−X(1) = γC sinh γ + γD cosh γ − C cosh γ −D sinh γ = 0,
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giving

D(−γ2 sinh γ + 2γ cosh γ − sinh γ) = 0.

We exclude the case D = 0 because then also C = 0. Then we get

(γ2 + 1) sinh γ = 2γ cosh γ,

and, finally,

tanh γ = 2γ
γ2 + 1 =: g(γ).

We plot the graphs of the two functions, tanh γ and g(γ).
We have

g′(γ) = 2(1− γ2)
(γ2 + 1)2 .

From here we find that g(γ) attains the maximum value g(1) = 1 at γ = 1 and that at γ = 0
we have g′(0) = 2. Moreover, limγ→∞ g(γ) = 0.
The function tanh γ is increasing with tanh γ < 1 and limγ→∞ tanh γ = 1. Moreover, at γ = 0
we have tanh′(0) = 1 < g′(0).
Therefore, we have the situation shown in the graph below, implying that there is exactly one
intersection between the two graphs.
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Question 2 (30 points)

(a) (15 points) Consider the non-homogeneous wave equation

utt = c2uxx + f(x, t), −∞ < x <∞, t > 0,

satisfying the homogeneous initial conditions u(x, 0) = 0 and ut(x, 0) = 0. Show that the
function

u(x, t) = 1
2c

∫ t

0

(∫ x+c(t−s)

x−c(t−s)
f(y, s) dy

)
ds,

is a solution to the given problem.
Hint: Computations become easier by introducing a function F (x, t) such that Fx(x, t) =
f(x, t).
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Solution
We first note that the given function satisfies

u(x, 0) = 1
2c

∫ 0

0

(∫ x−cs

x+cs
f(y, s) dy

)
ds = 0.

Then we compute ut. This becomes easier if we write F (x, t) for the x-antiderivative of
f(x, t), that is, Fx = f . Then

u(x, t) = 1
2c

∫ t

0
(F (x+ c(t− s), s)− F (x− c(t− s), s)) ds.

We have

ut(x, t) = 1
2c (F (x+ c(t− t), t)− F (x− c(t− t), t))

+ 1
2c

∫ t

0
(cFx(x+ c(t− s), s) + cFx(x− c(t− s), s)) ds

= 1
2c

∫ t

0
(cf(x+ c(t− s), s) + cf(x− c(t− s), s)) ds.

Therefore, for t = 0 we find that

ut(x, 0) = 1
2c

∫ 0

0
(cf(x− cs), s) + cf(x+ cs, s)) ds = 0.

Then we compute

utt(x, t) = 1
2c (cf(x+ c(t− t), t) + cf(x− c(t− t), t))

+ 1
2c

∫ t

0

(
c2fx(x+ c(t− s), s)− c2fx(x− c(t− s), s)

)
ds

= f(x, t) + c

2

∫ t

0
(fx(x+ c(t− s), s)− fx(x− c(t− s), s)) ds.

Moreover,

ux(x, t) = 1
2c

∫ t

0
(Fx(x+ c(t− s), s)− Fx(x− c(t− s), s)) ds

= 1
2c

∫ t

0
(f(x+ c(t− s), s)− f(x− c(t− s), s)) ds,

and

uxx(x, t) = 1
2c

∫ t

0
(fx(x+ c(t− s), s)− fx(x− c(t− s), s)) ds.

This shows that

utt = f(x, t) + c2uxx.

(b) (15 points) Solve the non-homogeneous wave equation

utt = c2uxx + f(x, t), −∞ < x <∞, t > 0,

satisfying now the non-homogeneous initial conditions u(x, 0) = φ(x) and ut(x, 0) = 0.
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Hint: The equation (including the boundary conditions) is linear.
Solution
The solution to the homogeneous equation

utt = c2uxx,

with u(x, 0) = φ(x) and ut(x, 0) = 0 is given by

u1(x, t) = 1
2[φ(x− ct) + φ(x+ ct)].

The solution to the non-homogeneous equation

utt = c2uxx + f(x, t),

with u(x, 0) = 0 and ut(x, 0) = 0 is given by

u2(x, t) = 1
2c

∫ t

0

(∫ x+c(t−s)

x−c(t−s)
f(y, s) dy

)
ds,

as it was shown in the previous subquestion.
Then we define u = u1 + u2 and we have the following. First,

utt = (u1)tt + (u2)tt = c2(u1)xx + c2(u2)xx + f = c2uxx + f.

Then

u(x, 0) = u1(x, 0) + u2(x, 0) = φ(x) + 0 = φ(x),

and

ut(x, 0) = (u1)t(x, 0) + (u2)t(x, 0) = 0 + 0 = 0.

Therefore, the function

u(x, t) = 1
2[φ(x− ct) + φ(x+ ct)] + 1

2c

∫ t

0

(∫ x+c(t−s)

x−c(t−s)
f(y, s) dy

)
ds

solves the given problem.

Question 3 (20 points)

Solve the equation ux + uy = u where the solution satisfies u(x, 0) = x2.

Solution
The coordinate method from the book gives

s = x+ y, t = x− y.

We then have

ux + uy =
(
us
∂s

∂x
+ ut

∂t

∂x

)
+
(
us
∂s

∂y
+ ut

∂t

∂y

)
= 2us.
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Therefore, the equation becomes

us = u

2 ,

which has solution

u = g(t)e
1
2 s.

Therefore, the solution in terms of the original coordinates is

u = g(x− y)e
1
2 (x+y).

Then for y = 0 we have

g(x)ex/2 = x2,

implying

g(x) = x2e−x/2.

Finally,

u = (x− y)2e−
1
2 (x−y)e

1
2 (x+y) = (x− y)2ey.

Question 4 (20 points)

Use the method of separation of variables to solve the equation

ut = kuxx − u,

where k > 0, 0 ≤ x ≤ `, t ≥ 0, and the solution satisfies the boundary conditions u(0, t) =
u(`, t) = 0 and the initial condition

u(x, 0) = 2 sin
(
πx

`

)
+ 1

5 sin
(3πx

`

)
.

NB: In this question you can use without proof the formulas for the eigenvalues and eigenfunc-
tions of any eigenvalue problem discussed in the lectures.

Solution
We take the separated solution

u(x, t) = X(x)T (t).

Then we have

XT ′ = kX ′′T −XT,

and

T ′

kT
= X ′′

X
− 1
k
.
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To be able to easily use the known results we rewrite

T ′

kT
+ 1
k

= X ′′

X
= −λ.

From the x-part we get the eigenvalue problem

−X ′′ = λX, X(0) = X(`) = 0.

The eigenvalues are

λn =
(
nπ

`

)2
, n = 1, 2, 3, . . . ,

while the eigenfunctions are

Xn(x) = sin
(
nπx

`

)
, n = 1, 2, 3, . . . .

The t-part gives the ODE

T ′

T
= −kλ− 1,

with solution

T = Ae−(kλ+1)t.

Therefore, the general solution is

u(x, t) =
∞∑
n=1

Ane
−(kλn+1)t sin

(
nπx

`

)
.

For t = 0 we get

u(x, 0) =
∞∑
n=1

An sin
(
nπx

`

)
,

which implies A1 = 2, A3 = 1/5, and all other An are zero. Therefore,

u(x, t) = 2e−(kλ1+1)t sin πx
`

+ 1
5e
−(kλ3+1)t sin 3πx

`
,

or

u(x, t) = 2e−(k(π/`)2+1)t sin πx
`

+ 1
5e
−(9k(π/`)2+1)t sin 3πx

`
.
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